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TECHNICAL M1310RAND~ 1369

m PLATE CASCADRAT SUPERSONIC

By Rashad M. El Badrawy

INTRODUCTION

sPEE@

The cascade problem in the subsonic range can be analyzed under
certain assumptions either by mapping or substitution of the blades by
singularities - sources, sinks snd bound vortices - where the separation
of flow from the blades can cause various departures from the obtained
results.

Raising the flow velocity to a given value is accompanied by sonic
velocity within the cascade, which usually renders the solution of the
problem even more difficult. The sane complication exists on the cascade
in flow at supersonic speed, in which the velocity is retarded to sub-
sonic by shocks.

But when the cascade operates entirely in the supersonic range, the
conditions become clearer. All disturbances act downstream only from the
somces of disturbance, so that the pressures and velocities at the sur-
face of a sufficiently thin airfoil in the stremn csnbe readily determhed.

The present report deals exclusivdy with problems of cascade flow
in the supersonic range. As is known the flat infinitely thin plate is
the best airfoil with respect to wave resistance in supersonic flows;
hence it is logical to start with the cascade of flat plates. The last
chspter deals with the case of finite thickness.

Lift and wave resistance of an isolated plate are computed first
since the cascade -problemcan often be reduced to”this special case.
The well-known theories of two-dimensional.supersonic flow are applied -
that is, the laws of oblique compression shocks and the exps.nsionaround
a corner.

The air forces are then calculated again and compsxed with the pre-
viously obtained exact values by meam of Ackeret’s formulas of line=ized
theory.

*“Ebene Plattengitter bei herschallgeschwindigkeit.” Mitteilungen
aus dem Institut ffi Aerodynamic an der E.T.H., no. 19, 1952.
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The cascade problem was to be solved in such a way as to be free
.

from the inevitable inaccuracies of the graphical method. For this reason
the cases of overtaking, crossing and reflection of compression shocks and W“
expansion waves frequently occurring on supersonic cascade flows, which
usually are solved by graphical method, are analyzed in chapter 11.

In chapter 111 the cascade problem is discussed and its solution
described in the light of the results obtained in chapter II. A numerical
example is also given. The same chapter gives further a definition of
the efficiency of the simple supersonic cascade and an evaluation for
several angles of stagger and attack.

The small angles of attack involved justified the use of a linearized
cascade theory.l This is done in chapter IV. The numerical example of
chapter III is thus linearized and the results compared with those of the
exact solution. The supersonic cascade flow at various singlesof attack
was recorded by schlieren photographs of the flow between two parallel
plates, in the high-speed wind tunnel of the Institute (chapter V).

Chapter VI deals with the specific case of unsteady flow through
the cascade, caused by abrupt angle-of-attack changes.

w

lAccording to Ackert’s linearized theory, the lift and drag of
double-wedge profile of thickness d and chord Z at angle ~ in
sonic flow M is, in the presence of fii.ction(cf)

1- 7

For the best bag-lift ratio ~ = ~,

the wave resistance should be equal to the
ness effect. In that event

put $& = o. This means

sum of friction drag and

-..

1

+ Zcf K
“4

.opt=2,0pt=L’/-

a
super-

G

that

thick-

P

Assuming possible values for d/Z and cf results in comparatively -
G

small optimum anQes vopt.

v
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.

In chapter VIZ the effect of friction and thickness in a special

* case on the cascade efficiency is analyzed. Since there might be a
possible application of the supersonic cascade to the supersonic pro-
peller, a simple evaluation of the efficiency of such a prope~er is
made. A parallel steady two-dimensional flow is - with exception of
chapter VI - postulated.

The conventional notation is used unless specifically stated other
wise in the text.
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CHAPTER I. TKE FLAT

1. General Considerations -

The general equation of continuity of

ME

Stipulations

any compressible flow is

ap+ a(pu) + a(pv) ;M=o——
at ax by az

(1)

The rate of propagation of a small disturbance, that is, the sonic
velocity, is, as is known

(2)

Cp
where K = q“

In flows, in which
tion can be written as

a flow potential p exists, the continuity equa- J

The momentum theorem gives the following relations

1

-Q Q=a+afi+afi+a *“
pax bat Z3xaxz baxay azaxaz

(4)

,
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In two-dimensional flow the potential must therefore satisfy the
equation*

The velocity of sound is then

a2=%2(K-1)[,~y+& r]+3]

where % = velocity of sound in state of rest.

i For the steady case, the equation is reduced to

(5)

(6)

and the flow is completely identified,
is to satisfy the boundary conditions,

This equation is either elliptic,
upon

if the function q(x,y), which
is determined.

parabolic, or hyperbolic, depending

(1- M2)$0

where

(8)

is the local Mach number.
●
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.

The use of this equation is difficult if its type in the particular
range, as in the transonic rsmge, is changed. However, the flows analyzed .
here, are of identical character everywhere, that is, the flow is of the
hyperbolic type.

One of the known solutions is the expansion around a corner, developed
by Prandtl and Meyer (ref. 1).

2. Conditions at Expansion Around a Corner

The two-dimensional flow past the wall AE at a Mach number Ml

(fig. 1) is deflected by a convex bend at E through an angle @, through
which an expansion is initiated. The
spreads out solely in the range lying

where

disturbance proceeding from E
downstream of the Mach line EBl,

and stops at

+ BIEA’ = Mach angle l-q= sin-l ,&
Ml

the Mach line EB2, where

4B2ED=v2= sin-1-$

(9)

In it M2 is the Mach number of the flow after the expansion.

The streamlines in range B1EB2 are curved similarly and run

parallel to the wall ED downstream of this range.

It can be proved that the Mach lines in this flow are the character-
istics of the differential equation which define the potential.

When the expansion

the following relations

proceeds from

can be proved

tanp2=A

a Mach number Ml = 1, (Ill= ;)9

(ref. 2):

cot h (lo)

.

w
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K
.—

Pa

()

K+l K-1
—=
Po 2 Cos%

(11)

(Po = stagnation pressure)

M2 =

d

(K + 1) -2 Cos%u

(K - 1)cos2Xo.)
(L2)

Obviously

(13)e= cD+ l+-

As function of M2 (ref. 3)

.

(14)

which cor-

1
c

This equation gives a maximum of expansion &,angle

afterresponds to expsasiona Mach nuder M2 = M

Elm =

(K = 1.400)

lx. 450

,

expansion Ml is assumed other than 1,If the

the maximum

Mach number before

angle of expansion

the

becomes obviously

where v is the angle of expansion from M = 1 to Ml. The values for
various Mach nwibers of the inflow (MI) are

Ml 1.00 1.X 2pm 2.X 5 8 10 m

o 130.45 118.5Y 104 ● 07 91.32 53.55 34.53 28.14 0%sx Ml
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3. Conditions of Oblique Compression Shock

The di.scontinuitiesthat may appear in supersonic flows and across
which velocity, pressure, density, temperature, and entropy undergo a
discontinuity, while the total energy, thermic and mechanical, remains
constant, were predictedby Riemann (1%0) and Rankine and Hugoniot’(1887)
as normal compression shocks.

.

—..

In oblique shocks (Prandtl-Meyer)only the velocity component normal
to the shock front is modified.

In figure 2 the supersonic flow past the wall AH is deflected at E
by an angle 8. A compression shock is produced and the shock front ES
iS inclined at an angle 7 - the shock angle - to~d the air flow
direction.

—

With’subscript 1 denoting the state before the shock and subscript 2
that after the shock it canbe proved that (refs. 3 andk)

Pa‘—=
( )

~M12sin27 - &
PI (15) .

1

+{

K-1
P2’ ~.lPl F 2

(K :’1)2 ( )[

sin27- H 1+ 4K

]( )-]

‘1 K
Po‘=’+1~

sin2y —
fc+l (K - 1)2 ml

(‘+-1 M12
Cotb= —

2
)

-ltany
M12sin2y - 1

up‘ Cos—= Y
~ COS(7- 5)

(16)

(17)

(18)

(19)
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tan(y - (5) P1 1=—=

[

(20,21)
tan 5 P’2‘ Ic+l 1 K- 11+-2 M22sin2(y - 5) 2

A direct relation between the Mach numbers before and after the
shock can be established

%’ Cos ‘/+P2’ P1—=

‘1 COS(7 - ~) Pa’ P1
(22)

The relation for the change of the static pressure by the ‘shockis
the same as for the normal shock when it is applied to the velocity com-
ponent perpendicular to the shock front. Consequently

K# \— 1

2=(17y5J7*M’sin27-
that the shock angle 7

(23)

is greaterFrom these equations it follows
than the Mach single,that is, the speed of propagation of a-finite dis-
turbance is greater than the sonic velocity. When the am.gleof deflec-
tion b approaches zero, 7 . w and the shock chsmges to a Mach wave.

Also of hterest is the shock angle at which the Mach nuniberafter
the minimum shock becomes equal to unity. Denoting this angle by 7~

it can be proved (the weak stable compression shock is always allowed
for) (ref. 3, p. 47) that

(24)
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This equation is used to determine the msximum shock angle which
corresponds to a Mach number before the shock Ml = w and a Mach num-

ber M2’ = 1 after the shock. The result is

K+l
sin2ys = — .

2ti

hence

(25)

7s = 67.EP

at~= 1.400 (air).

By”equation (18) the correspondingdeflection angle 5s is

65= 45.5W

2Table 1 and figwe 3 represent the values of ~s and bs at

various Mach numbers Ml.

4. Lift and Drag of an Inftiitely Thin Plate (Exact Solution)

An infinitely thin plate ab in parallel flow at supersonic veloc-
ity U1 is placed at the angle ~. It is assumed that the width of the

plate transverse to the flow direction is M, so that the problem is two
dimensional.

The streamlines above oa (fig. 4) experience a deflection which
is associated with an expansion. So the state at the upper side of the
plate canbe definedby equations (10) to (14). But below the plate a
compression shock ad occurs. The state of the flow on the lower side
of the plate is accordingly determined from the formulas (16) to (21).

The force on the plate per unit area is

K=
(
P2‘ - P2

)
(26)

2
The weak stable shock is always taken into account. See Richter,

ZAl@f,1948 and Thomas, prOC. N.A. Se., NOV. 1948.
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.

where P2’ and- P2 represent the pressure on the lower and upper side

‘i of the plate.

Obviously, the lift A and the drag W per unit width are

A= K COS IJL (27)

v= K SillWL (28)

To compute a lift coefficient, a reference dynamic pressure of the
inflow

or.

. (29)

is utilized.

As function of the Mach number Ml, the ratio of dynatic to airstream

pressure is

that of dynamic to stagnation pressure is

* The results are represented in table 1 and figure 5.

.

(30)
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Lift snd drag coefficients are herewith

or, if

A P2‘ - P2
Ca=—= Cos q

qlz ql

w

()

P2: - P2
c~ = —=, sin *

@ !L~

1

all pressures sze referred
1- 1

Ca =

The &?ag/lift ratio is

to stagnation pressure
r -1

1]()PJ P2
—-—
Po Po

%= sin
ql

q

(31)

(32)

(33)

Table 2 gives the values of Ca, Cw, and e up to Ml = 10 as

computed by the formulas (32) and (33).

In the calculation of the Mach numbers up to Ml = 4, the tables

by Keenan and Kaye (ref. 6) as well as those byFerri (ref. 3) were used
to define ??2/Po ~dP2’lp~ (~=1.~o).

For higher Mach numbers, the formulas of sections 2 and 3 were
employed. At each Mach number, the angle of attack was varied up to
~s(M2’ = 1).

Figures 6 and 7 show the variation of Cw end Ca over the mgle

of attack ~; figure 8 shows the pohrs ca plotted against Cw.

The boundary curves show the maximum lift and drag coefficients that -
can be expected without getting in the trensonic range.

#



3K
NACATM 1369 13

Other values for the boundsry curve sre given in table 3. Since the
pressure distribution on the upper and lower side is constant, the result-
ant force is applied at plate center-and is normal to the plate. There is
no suction force as in subsonic flow.

~. Lift and Drag at High Mach Numbers

At high Mach numbers the singleof &ttack of the plate can exceed
the ms.ximsunexpansion angle ~ (section 2) corresponding to the Mach

number of the airstream % = *S at MI ~ 6.4). Hence, when assuming

continuous flow, an empty wedge-shaped zone between plate and flow appears.
This zone is largest at constant angle of attack when. Ml = =. h that

event, no deflection of flow is possible.

Owing to this vacuum space, the pressure at the upper side is zero.
The resultant force K is obtained then from the pressure on the lower
side, behind the compression shock. Hence, per unit area

or, when referred to the

K= P2‘

WC pressure

(34)

of the airstream,

Introducing p2’/pl from equation (15) gives

K 4 -1 2—= Sillzy- ~—
ql Ic+l K+1M2

‘1

where the term containing l/M12 can be disregarded

K 4—=— sin27
Q K+l

(35)

without great error.

(36)
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So the lift and drag coefficient are

Ca =

%=

Both formulas are dependent
exist the relation given in
follows (5 = *):

4 sin2y cos *
K+l

1

)

NACA TM 1369

4 sin27 sin.~
K+l

J

On Y W ~ only. Between these
equation (18), which can be written

cOt’=(Fsin2;-
.

where the term ~ can be disregarded again. Then -
Mlz

The values and curves

(37)

there
as

(38)

S.nd

The

designated with M = m in table 2 and figures 6,
7 and 8 were defined by equations (37) and (38). For comparison the lift

&ag was also computed by Newton’s formula (the normal component)

correspondingvalues

Ca = 2 sin2* cos

%= 2 sin3~

and curves carry

‘+

1

the subscript N.

(39)

.

“.
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.

ii

.

.

6. Calculation of Lift and Drag by Linearized Theory

According to Ackert’s linearized theory, the

in~
ay

can be disregarded without great error in

members of higher order

the potential equation

1-

for slender bodies at small angles of attack, because the interference
flows are small compared to that of the airstream.

The equation reads accordingly
.

[ ()]&l J?22 +252=0
ax2

~2 &
ay2

Inserting

()&322@
a2 ax

and observing that M is greater than unity, the equation reads

a2q o5(M2-1) -—=

ax2 ay2

The general solution of this equation is

.

.
It indicates,
potential are

(40)

(41)

as stated in section 2, that the lines of constant
the Mach lines of flow, and theti slope has the Mach angle p.
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This solution shows further that the flow velocities

U=??i ~. .=32
ax hy

satisfy the condition

“=-v+= (42)

At the surface of a body in the stream

u..QX
Udx

is applicable.

The pressure variation by the momentum equation reads

4= -U AU=-UU (43)
P

where U is flow velocity and u is interferenceflow in stream direc-
tion.

Accordingly

(44)
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The pressure difference between both sides of a flat plate is
G

The lift snd drag coefficients at the angles in question sre

.a. _k4_

F= 1

C“=*I.
The drag/lift ratio according to this theory is

%?$
E =—=

Cs,

17

(45)

(46)

(47)

Instead of the expansion wave and the compression shock at the
leading edge, it has simple Mach lines as interference lines (fig. 9), “
in contrast to the exact theory.

The values given in table 4 and plotted in figures 10 snd 11 were
computed by thes’eformulas. The calculations were carried out at each
Mach number up to singleof attack ~s - from the exact theory. The cor-

responding Ca Slld C~ values lie on the curve G’.

At sonic velocity on the lower side of the plate p2’/po = 0.5283.

This value, introduced in the following directly obtainable relation

2*CI1
P2‘ -P1=$LP=

m

(48)
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and

NACA TM 1369

gives the singleof attack ($~z) correspondingto

eral is greater than ~s. .

M2 ‘ = 1, which in gen-

7. Comparison of the Results of the Linearized Theory With

In

ficient

at Mach

It

Those of

table 5, the difference

of the exact method and

numbers Ml = 1.40 and

the

is

cL

Ml

follows that the linearized
for small angles (up to about 100).

and ~ we too small.

Exact Method

(CG - @, where CG is the coef-

is that of the linearized theory

= ~.oo.
.

theory is a very good approximation
For greater singlesthe values of Ca

#

In figuxes 6 and 7, the Ca and ~ curves by linearized theory

marked A’ and A me included for comparison.
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CHiPl!ER11. INTEHZC?YON, OVIWUKING ANDREFLEC!lIION

OF COMPBXSSIONSHOCKSANDEXPANSIONWA=

1. Introduction

Overtaking of expansion waves and-compression shocks in supersonic
flows occurs when the msrginal streamlines - or boundary walls - change
their direction twice in the opposite sense (fig. 12(a)).

If expansion waves or compression shocks strike a fixed wall and
their slope tows.rdthe wall does not exceed a given angle, they are
reflected as expansion waves or compression shocks (fig. 12(c)). Crossings
occur in flows through channels and free jets (fig. 12(b)). All these
events can occur in cascade flows (fig. 12(d)).

2. Small Variations

(a) Suppose that a small
. flow ML PI} al, pl past

expansion is L@. If m is
tions are permissible.

s

expansion occurs.at B in the supersonic
the walIi AB (fig. 13). The singleof

sufficiently small, differential considera-

Bernoulli’s equation gives

41 = - Plul ml (49)

where U is the magnitude of the velocity and AU its variation; 4 iS
the pressure veriation.

Since the vectorial velocity variation is normal to the interference
line, the vsriation of U is

(50)
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hence

“=-F’
But, as the dynamic pressure q ,isgiven by

the pressure variation can be written as

The variation of the Mach number M follows at (ref. 3, p. 26)

(51)

(52)

(53)

The Mach line BE1 forms with flow direction AB the Mach angle wl~

the Mach line BE2 at the end of the expansion the Mach line p2. Now

it may be assumed that this small expansion takes place on the inter-
ference line BEt, whereby

(54)

(b) A simple differentiationgives the change of the shock angle 7
as well as the pressure change .p2’ after the shock, due to a small vari- .

ation of the angle of deflection 5, for the compression shock AB
(fig. 14) .

w
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Between 7 and b the relation (eq. 18)

( ).
K+1M12
2

cot 5 = tsa 7 -1

M12sin2y - 1

exists, and therefore

where

A= ~ M12
2

(
B = M12sin27 - 1

)

and

c [() 22A
sin2b sec27 ~ - 1 - M12sin 7 —=-

B B2

The pre.s~e P2’ after the shock is (eq. 15)

(2K )

K+l
P2‘ =Pl— M12sin27 - ~

K+l

and the result for a small variation of

+ . 2K
Ap2‘ = P1M12 ~

s

the shock intensity is

sin 27 A7

(55)

(56j

(57)
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3. Overtaking of Compression
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.

Shock and Expansion Wave

(a) The supersonic flow Ml, PI, PI past the till

undergoes a directional change b at E. The compression
the flow direction form the shock angle 71 in zone (1).

sion takes place about an angle Q, and the expansion wave
the compression”shockat F. To simplify the calculation,

All (fig. 15(a)) -

shock EF and
At C an expan-

FCG overtakes
the continuous

expression is replaced by a given n&er-of expansion waves of finite
intensity, whereby a successive expansion through these waves is assured.
If n is the number of waves, the expansion due to a wave is @/n= A~.
The number n must be so chosen that L@ is sufficiently small.

Now consider the intersecting of wave ~l(f@ m compression

shock EFl(b), figure 15(b).

From F~ the compression shock advsmces with weaker intensity in
direction Gl, that is, it deflects the flow less - say by ~~. FIG1 forms

with the flow direction the angle y’ at (l). Indicating the various zones
by (1), (2), (3), and (4), the streamline through F1 splits the zone (4) ~

into the portions (4.) and (~). The flow in (2) and (3) is fully known,
because the angles b and A@ are known.

To define the conditions in (4), the streamlines S1, S2, and S3
v

are examined. The directional change of S2 amounts to (5 - A@). But
along S3 the flow experiences the directional change 5’. To maintain

equilibrium in (4), the pressure as well as the velocity direction above
~d below the stre&mline- S1

In general, the pressure
as from (1) to (4), so that a
compression too - must appear

must be equal.

change from (1) toward (3) is not the sane
reflected expansion wave - possibly a small
between (3) and (4), say along a line FIH1.

Supposing that this reflected wave is an expansion wave of inten-
sity A@’. By “intensity” of an expansion wave or a compression shock is
meant the deflection, which the flow experiences in the process.

The pressure in (~) is, (accordingto section 2)

ph=p3f-,_:) (58)
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of the deflection angles smounts to (5’ - 5) = &. In
general, this intensity decrease is–small,
is much stronger than the expansion wave.9
shock sngle 7 is A7.

The pressure in (~) follows froIuthe
Hence we can say that

P40 = P2’

This is again the equation for sma~
equation (57). Accordingly

p4~ = P2’ - p1M12

POsti~ p40 = P4U, gives
.

because the compression shock
The corresponding change in

change in shock intensity.

- &z’ (59)

variations derived for shocks from

2K
— Sb 27 A7 (60)
K+l

For the velocity direction in zone (4) to be unequivocal, it must

A3=A5+M’ (62)

The relation between shock intensity variation and angle of shock
(eq. (55)) together with the two previous equations gives

.J45L
( Q
ZQFG ---F

c )
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.
with the constants

‘=*-1

The condition for

NACA TM 1369

(64)

2 M12sin 2y

‘=?

Q=
M22 - 1

(

-1
M12sin2y - &

)

equality of static pressures is not identical with
that for equality of Vel;city &gnitude above and below the streamline S1.

As the shock losses on either side of the intersectionpoint F are
unlike, the stagnation pressures in the wake above and below streamline S1

are different, hence there is a small vortex layer along this streamline.

Fig’we 16 represents the graphical solution of the problem by means
of the characteristicsand the shock polars. The condition for equality
through equality of velocity magnitude in the entire zone (4) is
approximated.

(b) The reflected wave is disregarded:

In general, the angle of deflection AE$’- intensity of the reflected
wave - is very small (compare numerical exsmple). Thus the pressure in
(3) is not much Unlfie that in (4), so that this reflected wave FIHl can

be discounted.

In this event
or in other words

With equation (~5)
of the compression

the flow directions in zones (3) and (4) are identical,

L5 can be
shock. The

A@=LX3 (65)

defined and from it the new direction 7’
velocities in (3) and (4) have then obvi-

ously the seinedirection but not the same mag~itude b+ reason of the small
vort~x layer developing between (3) and (4).- -
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* Free stream:

P1/P()= o.127&2

Before overtaking:

shock intensity

shock angle

hence the state in zone (2)

p2po = 0.1773

intensity of the expansion wave

state in zone (3):

P3/Po = 0.1693

Determination of constants:

Numerical Exemple

Ml = 2.000

5 = 60

7 = 35.24°

M2 = 1.7W

A@= 1°

M3 = 1.818

c = 1.078

F = 3.04
G= 3.015.
Q= 3.175

Inserted in eq~tion (63) and (64) gives: inte&ity of the reflected wave
●

Ay = 0.89°

A@’ = 0.06°

By equation (62)

L5=A@- A@’ = 0.94°

Therefore the shock intensity sfter overtaking is

5 = 3.04°

The new shock angle 1s

Y’ = Y - AY=”34S350

The reflected wave disregarded, leaves

shock titensity

angle of shock

It is readily apparent that
scsrcely affects the pressure in

.

Ay = Cm=cm= L 078°

5’ = 50

Y’ = 34.16°

the reflected
zone (3).

wave is very small, hence
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4. Intersection of Compression Shock and Expansion Wave

Figure 18(a) represents an expansion wave w of intensity ~
proceeding from the corner A. At F this wave crosses a compression
shock of intensity b emanating from the corner B.

As before, the continued expansion is replaced again by n expansion
waves between which the flow is straight. The deflection by each wave is

&=:

After crossing (fig. 18(b)) the compression shock has an intensity 5’
and a shock angle y’. Now the expansion wave has the intensity L@’.

The zones produced this way me numibered(l), (2), (3), red(4).
The streamline FIS splits the zone (4) into (4.) and (4u).

Looked for now is the shock intensity 5’, shock angle 7’, and
expansion angle &l’ after crossing, and the state of flow in (4), when
the state of-flow in (1)

According to chapter
determined directly.

The pressure in (~)
to the laws in chapter 11

p41J

5, 7 and- 2@ me &own. ,
..

I the state of flow in (2) and (3) can be

follows through a “smallexpansion @r according
at

(j- ~M12
=p21- \Ml’ (66)

\v Ml~ . 1

J

where LW is still unknown.

the

The

The method of solution consists in first making an assumption for
shock intensity after intersecting,which is

corresponding

5~= (b-L@

angle of shock would be 7i.

(67)
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The state after this

according to chapter II.

27

shock, indicated by 4.’, can again be defined

The pressure in (4.’) is

( K-~M32Sin27i )1P40‘ ‘P3K+1
-—
K+l

(68)

/ /

Now the flows in (4.) and (2) have identical directions, but the
pressures and the magnitudes of the velocity are different.

To assure equilibrium within (4), the pressures and velocity direc-
tions in (4.) and (~) must be equal. And to satisfy this condition the

assumed shock must be intensified by &i.

ObviouSly it shall

Abi = M’

The new pressure in (4.) is (according to section 2b)

(69)

where A7i is

equation (55)

P40 = P40‘ + P3M32 ~ sin 27i A7i (70)

the change in shock angle 7i md iS computed by

(For the calculation of C see section 2b)

Posting p4 = P~ equations (66)~ (68)~ (70)j and (71) giveo

p2[-i-~)=p3(+M;5in27i--)+

(71)

2K m’
— sin 27 —

P3M32 K + 1 c
(72)

This equation is linear in AE1’.
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Now the quantities 5’ and 7’ can be defined

5’ =5~+&i=5i +&’

7’
A@’

=7i+A7i=7i+—
c

.

(73) -

(74)

The pressure in (4.) canbe obtained directly from equation (70).
The Mach nuniber M40 itself can be determined according to chapter I,

if 5’ and 7! are known. That in (~) is likewise directly obtainable

from M2 by the isentropic expansion &?’.

The slight discrepancy between the values M40 ‘d ‘~ is due,
as stated in section 3, to the fact that the condition for pressure
equality, owing to the change in static pressure after both shocks, does
not require equal magnitude of velocity. So a small jortex layer along .
streamline FIS is to be expected.

Before intersecting the expansion wave forms with the flow direction u
in zone (1) the amgle (section 2)

After intersectingthe angle with the stream direction in zone (2)
is

But there is a difference 8 between the flow directions in (1)
and (2), 30 that the looked-for directional change is
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.

The directional change of the shock front is

kc=7-(7’+A9)

A negative aagle b and a positive angle
expansion wave or shock front after cros.si& is
direction.

For illustrative and comparative purposes,

c
in

(76)

indicates that the
more downstream

the graphical solution
in figure 19 was made with the aid of ~he-characteristi~s and shock polsr.
Here also the condition for pressure equality was replacedby velocity
equality.

The described mode of
exsmple for illustration.

calculation is used in the following numerical

Numerical Exsmple

The flow in zone (1) is:

P1/Po = 0.22905 Ml = 1.435 = 44.180 (See cascadeU1 ,
exsmple of the following chapter III, zone (3)).

Data before crossing:

intensity of

intensity of

expsnsion wave

compression shock

shock angle of compression shock

With it the states in zone (3) become:

-—

fg=lo

5 = 3.030

7 = 47.910

P3P01 = 0.28478 M3 = 1.469 P3 = 42.89°

Therefore

P2/Pl = 1“157

p2/pol = 0.34560

Assumed shock intensity

5~ =

M2 = 1.332 1+ = 47.75°

5 - A~= 3.03 - 1= 2.03°
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corresponding angle of

pressure after shock

Determination

A=

B=

c=

NACATM 1369

.

shock Y~ = 45.29°

/
P40’ Pol= 0.3153

of the constants

~M32 = 2.592
2

(M32sin2yi . 1) s o.o92

[()A 22Asin2bi SeC27i - - 1 - Si#7iMl —
B B2

Equality of pressure in (4.) and (~) gives

= P40 = ’40
2 2K

‘+’*3 ~+1
m’_ sin 27i ~

which inserted gives

“e’ =&i= 0.89°

q
Ayj-=-= 1.190

c

= 0.7504

.

After the crossing:

shock intensity 8’ = bi+~i s 2.03+0.89= 2.920

shock angle 7’ = 7i + “yi = 45.29 + 1.19 = 46.480
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IP4 Po = 0.3303 V4= 47.OP

M4U = 1.3643

M40 = 1.3640

The comparison of the two Mach nunibersindicates that the difference is
quite small and lies within the calculation accuracy.

Directional changes:

Expansion Wave ~b=

Shock front +C=

~. Crossing of

43.036+3.034 - 47.47= - 1.40

47.91- 46.48 +

Expansion Waves

1 = + 0.430 “

Each exps.nsionwave is again replaced by n small waves. In fig-
ure 20(a), two waves of intensity ml and &2 cross each other in F.

After crossing, the intensities we ml’ and @2’. In this case, only

one stream direction is obtained in zone (4), when

LQ1+A32= flq’ +L13p’ (77)

Application of the relations of section 2 results h

P4 = P3 -@3= P2 -@2

that is

(78)
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Since all other quantities are known, ~’ and ~’ can be comp-

uted from these two equations.

The directional change of the Mach lines is like that in the pre-
ceding section

$C.
Pl+P2-fw2

2

Since all chsmgqs follow the same

lJ,2+iJ4-~’
+%1- 2 (79)

(m]

adiabatic curve, the condition for
pressure e’qualityyields equal velocity values at-both sides of the
stresniline FS. Hence, no vortex layer will appear. Figure 20(b)
represents the graphical solution.

Numerical Exsmple

Airstream:

The

The

The

The

IP1 PO = 0.3295 Ml = 1.366

intensity of the first expansion wave

I
P2 PO = o.313.4 M2 = 1.402

second expansion wave intensity is:

conditions in zone (3) axe then

I
P3 Po = 0.31245

‘3
= 1.4041

.

.

A

l’q= 47.050

is: ~= 0.990. Therefore

w = 45.5Q0

q= 1.060

43 = 45.4330

two equations defining ~’ and A~’ ~e:

~+2@2 = 0.03579 = Z@l’ -f-f@2’
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.

hence

i

after which

By equation

WL’ = 0.0184= 1.054°

*.’ = 0.0174= 0.997

the conditions in

P4/P()= 0.29722

(79) ~d(~) the

zone (4) become:

M4= l.kk p4= 44.01°

directional changes of the waves ae

and + c= -0.020

6. Reflection of Compression Shocks and Expansion Waves
.

No difficulties occur in the determination-of the conditions existing

s behind the reflected compression shock FB (fig. 21). Those in zone (2)
can be defined according to chapter 1, if the state of the airstream and
the intensity b of shock AF are known. Obviously the reflected shock
is of the same intensity as the impinging shock, so that the shock angle 7
of the reflected shock and the conditions in zone (3) can be defined.

The ssme holds true for the reflection of expansion waves, when the
intensity of the expansion waves and their slope with respect to the wall
sxe known.
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CHAl?TERIII. TEE CASCADE PROBLEM

1. Problem

Visualize a cascade of infinitely many and infinitely thin flat
plates, of which two adjacent plates AB and A*B: are represented in
figure 22. The angle of st~ger is ~.- ~, the spacing t ~d the
blade chord L. This cascade is exposed at angle of attack ~ to a
supersonic flow Ml, Pl, P1“

It is assumed that the flow is the same in all planes perpendicular
to the plates and determines the force, that is, lift and drag as well
as the pressure variation along the plate (blade).

2. Method of Calculation

To each plate there correspond interference lines (chapter 1), that
is, the expansion wave issuing from the leading edge and compression
shock (fig. 22).

At wide spacing, the sepsrate blades of the cascade will not affect -
each other and the problem reduces to the single plate.

Now if the spacing decreases for constant chord, the interference
u

lines of one plate intersect those of the other, without, however, any
force being exerted on the plates themselves for the time being, In
this event, the force on each plate is the same as on the single plate,
sxcept that the wake flow is slightly disturbed.

The values of t/L, below which the interference line of a plate
begins to exert sn effect on the sdjacent one, are called (t/L)crit

“critical chord-spacingratio.”

)At t/L< (t/Lcrit the interference lines are reflected on the

plates. After the crossings and reflections, new zones appear on both
sides of the plate where the pre”ssureas well as the velocities are
unlike the uniform pressures and velocities to be found at either side
of the plate. As a result, there is a chsmge in the total force as well
as the lift snd drag on each plate.

The mode of calculation consists in defining each intersection and
reflection with the laws of chapter II and from it determining the con-
ditions in the several zones. Integration of the various pressures on
both sides of the plate gives then the total force, that is, the lift
and drag.

.

.

*
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The resultant force still is perpendicular to the plate, but no
. longer through the plate center, hence produces a moment with respect

to the center. The position of the force is defined by statistical
methods.

This method is illustrated in the following example.

3. Example

The cascade ABA*B’ (fig. 23) with 30° angle of stagger, that is,
B
.600, and at angle of’attack of $ = 3° is placed in a stresm with

Ml = 1.4004 (correspondingto v = 90).

The-blade spacing was assumed at the beginning, while the plate
chord was so chosen after completion of the calculation that the expsnsion
wave was reflected exactly once on the bottom side of the upper plate.
It was found that t/L = 0.547.

The flow experiences a compression shock stsrting at the leading
. edge A’. The shock angle y= 49.57° is read from the shock tables

and the shock front A’a can be plotted.

. Proceeding from the leading edge A, an expansicm wave spreads out
between the Mach lines Ax and. Ay. The first forms with the airstream
direction the angle K1 = 45.56 . The characteristics tables give

M7 = 1.503, that is, the Mach number which is obtained at an expsnsion

by 3° from the Mach number 1.4004. The corresponding Mach eagle, that
is, the.41 ar#e which direction Ay forms with the plate, would be
P~ “ “ Instead of the continuous expansion, assume an expansion

in three stages, each corresponding to a 1° deflection. The conditions
in zones 1, 2, 3, and 4 sre obtained from the characteristics tables,
after which the directions Aa, Ab, and Ac can be defined.

.
By applying the methods of chapter 11 to the calculation of the

crossings a, b, c, e, f, g, 1, in, n, P, q, s and the reflec-
tions d, h, i, k, o, r, u, the static pressures, the Mach numbers
(table 6), sndthe intensities of the expansion waves and compression
shocks, as well as their directional changes (see table 7 and fig. 24)
in the several zones, cm be determined.

The static pressures were referred to the stsndsrd stagnation pres-
sure

.

s tion

Pol“

The stagnation pressure changes were disregarded in the determina-
of the Mach number. This change is rather small according to table 6,
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so that no appreciable
calculation Of PO/PO.

NACA TM

advantage was to be gained by including it.
, compare eq.

I -L

The pressure distribution past

(23).)

1369

(For -

the plate is obtained immediately and
represented in figure 25. There the passage of compression shocks and
expsmsion waves is accompanied by a sudden pressure variation. Since the
actual expansion is contentious,the serrated line is replaced by a smooth
curve, such that the areas decisive for the force calculation are identical.

Note that the pressures on both sides of the plate cancel out over a
lsrge portion of the chord. The resultant force can be determined by
integration of the vsrious pressures; the various spacings 2 are read
directly

The

Downward

from figure

plate width

23.

was assumed at

x )pz:—-
PO1 L

resultant force

b=l. The result is

= 0.2963 upper side

= 0.2896 lower side

K
—= 0.0067
PolL

lift coefficient

K Pol
ca=— —Cosq= 0.01532

POIL ~

drag coefficient

K Pol
% =— — sin $ = 0.00082

POIL q
-J.

.

.
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k. Calculation of Thrust, Tangential Force and Efficiency

(a) The resultant force on the blade is resolved into two components.
One - the thrust S - is normal to the plane of the cascade, the other -
the tangential force T - parallel to it

then

As functions of lift and

resultant force

cascade stagger

(fig. 26).

per unit of area

angle

drag

s = Acos(~ - $) - Wsin(~ - ~)

T = Asti(~ - *) +Wcos(p - *)

Referring the force
gives the coefficients

similsr to the
from ca ~d

( 81)

to the dynsnic pressure ql of the airstresm,

(82)

lift and drag coefficients, which can be obtained directly
c~.
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At fixed blade chord and fixed angle of attack the resultant force
reaches its maximum value when adjacent blades do not affect each other,
that is, when t/L> (t/L)crit. In this event

K= P2‘ - P2

where P2’ is pressure at lower side (behind compression shock) and

p2 is pressure at upper side (behind expansion wave).

For a given Mach number of flow and angle of attack the thrust and
tangential force is maximum at j3= 0° and ~ = 90°, respectively.

At a given angle p
with increasing ~. Owing

order to prevent subsonic

and a given Mach number, T and S increase
to our assumptions $ may not exceed ~~, in

flows on the bottom side of the plate.

(b) Eefinition of efficiency (no friction): “

It is supposed that the air enters normal to the plane of the cascade
at a speed v (fig. 26). The cascade moves with the tangential velocity ~ ●

and finds itself accordingly in a relative flow with an angle of attack $,
whereby tan(p - ~) = v/u. As a result of this “flow,the two forces S 4,
and T normal and parallel to the plane of the cascade act on the plate;
S and T are defined according to previous considerations. An efficiency
is defined as on a propeller, by visualizing the blade being driven at
speed u with respect to force T and so producing a force S in axial
direction on the flowing air. Then the power input is T x u, the power
output S x v and the efficiency is

or

tan p l+tanl$tanp

(83)

The efficiency is seen to be dependent on ~ and ~ only. At
constant ~ it decreases with increasing ~. At q= constant, ~ has
,amaximum, if

(84)
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that is, when

which approximately

tanp=tanlf+

gives

[(-n v)’ +-1

$.450. L*
2

The msximum efficiency is then

(5)

(E%)

At small values of V, tan 4 = v and ~ is negligibly small, hence

at~= 45° + &

(m

The efficiency for vsrious 13 and 4 is represented in table 8smd
figure 27.

I

.

.
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CHAPTER IV. LINEARIZED CASCADE THEORY

1. Assumptions

The theory is based upon the following:

(a) All disturbances are small in the sense that all interference
lines may be regarded as Mach lines. The expansions are simply concen-
trated in a Mach line and the compression shocks replaced by Mach com-
pression waves.

(b) Intensity and direction of waves are not changed by intersection
of expansion and compressionwaves. The Justification of this assumption
is indicated in the preceding numerical example, where it was shown that
the directional changes of the wave fronts are small, ~ a rule.

On these premises, the interference lines AA’ end AA” parallel
to RB’ and BB” start from the small disturbances Ae.ndB
(fig. 28(a)). At the intersection in a the directions of the waves AA’
and BB’ as well as their intensities remain unchsmged. The presswe
and the velocities in the zones (2), (3), and (4) are defined by the laws
of chapter II. In the hodograph these assumptions imply that the char-
acteristics network in the applied zone is replaced by a parallelogram
(fig. 28(b)).

2. Line=ization of Cascade Problem

The application of these simplificationsto the solution of the
cascade problem produces parallel Mach lines within the cascade, which
remain parallel after crossings or reflections (fig. 2g(a)). (L = plate
chord, t = spacing and $ = angle of attack.) The Mach lines Aa
and A’a emanate from the leading edges A and A’; the angles ~t~t

and aAX sre Mach angles and both equal to VI. On passing through A’s,

the flow experiences a compression and a directional change ~, along Aa
an expansion with the same directional change.

The pressure in (2) and (3) canbe defined by the laws of isentropic
expansion and compression (chapter 1); that of zone (4) is computed the
ssme way from the pressure in (2) sad is obviously equal to pl, as seen

in the hodograph (fig. 29(b)). But the flow direction in (4) differs
from that in (1) by an angle 2*.

The Mach line aC’ intersects the plate at C’ and is reflected
along C’E, whereby C’E is parallel to A’&. The pressure in zone (5)
is again equal to that in (3) and the flow is obviously parallel egain
to the plate.

.

4
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On passing through DE’ the flow from (4) and (6) is compressed -
. the reflected wave DE’ - so that in (7) the direction and the velocity

of flow sre the same as in (l); the same applies to the flows in (6)
and (2).

‘Thusit is seen that the corresponding zones repeat themselves, hence
that the further conditions are completely known without new calculations.

3. Calculation of Lift sndDrag

The pressure variation on either side of the plate can be plotted
(figs. 29(C) ead 29(d)). The pressure remains constant over the lengths
AC, CD, DE, EF snd FB snd over A’C’, C’D’, D’E’, E’F’ and F’B’ -
where the interference lines strike the plate.

Along CD the pressures on both sides are eqyal and cancel out,
whereas a tiwnward pressure difference p3 - P2, obtiously perpendicular

to the plate, acts on AC and EF, sad an identical upward pressure dif-
ference on DE.

The pressure pattern in figure 29(e) repeats itself’in length iUrec-
tion of the plate over the period L1. If the plate chord is tiosen

‘4 exactly like L1 or a multiple of it, there is no restitant force, that

is, a plate of this

For the v%lues

length has neither lift nor wave resistance.

of L, which satisfy the inequality

Lo <(L- nLl) < (Ll - ~)

whereby n can be =0,1,2, . . ., the resultant force reaches its
maximum value, and then

K = (P3 - P2)L0 (88)

Eence it serves no useful purpose to make the plate longer than ~,
because there is no more lift increase anyhow. On the other hand, a
nmment occws and, in the presence of friction, the drsg would ticrease
unnecessarily. The boundsry Lo(= AC) is the plate lem@h not touched

.
by interference ties of the other plate and can be defined geometrically
in terms of casctie spac~ t and angles 13, *, and p.

F
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I.Q=t

Accordingly the best ratio of spacing/chord is

NOW Ca ~d ~ can be determined when

1. L= nL~ then ca=~=o

2. LO <(L- nLl) < (LI - ~), the boundary values sre

-1

K P~ - P2
Ca =—coS+= F C06 ~

qlL q~

>

K P3 - P2
+ =—sin~= F sin ~

qlL ~1
.

where

“tF=c
Sirl[p- (V3 + Vj

sin(Pl + 4)

3. Lo>(L-nLl)

1369

(m)

(90)

(91)

(92)

.

.

.

R
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4. (L - nLl) > (LI - ~)

.

P3
Ca =

[
- ‘2 (L - IILI) 1]-(LI - L())COS ~

qlL

(93)

P~
Cw =

[
‘p2(L-nLl) -( Ll-Lo~sin$

qlL
J

The linearization can be extended to the pressures p2 and p3;

admittedly then only when the angle of attack is sufficiently sInall.3

The pressures cm be defined by the laws of small variations
(chapter II).

Inserting
expressing the

smd the values
isolated plate,

Thus

(94)

these values in the above formulas for Ca and ~, while
dynsmic pressure with

ql = ~ ~p1M12

1 and * for cos 4 and sin ~, gives as for the

31n the following table the pressures titer expansion of PO = 0.31404
(corresponding to Ml = 1.4~k) are represented in terms of the expansion
angle:

P2 = pressure according to isentropic law of expansion

pm = pressure according to the laws of small variations (chapter II)

1 2 3 4 6“

x

P2/Po 0.29906 0.28478 0.27114 0.25829 0.23363

P~/Po o.2g865 0.28335 0.26718 0.25266 0.22196

(P2 - p~)/p2 percmt 0.1 0.5 . 1.5 2.1 5.0
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4+ ~
ca. — [I .

vM2.1

‘=6
The factor F approaches 1 when t/L =

(95)

%~~ . The theory is now illus-

trated on the following numerical example.

with

k. Numerical Exsmple

The csscade of the numerical example in chapter 111 is applied again
the same airstream as by Mnesrized theory, figure 30.

It was

t/L = o.pb~ P = 600

Ml = 1.4004 $.30

P1/Po = 0.31404 PI= 45.~6°

The Mach lines within the cascade can now be plotted. By equation (8g)

~ = 0.144L

Geometrically defined are

(LI -Lo) =0.778L
so that

(L - Ll) = 0.078L

R
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The tables of characteristicsgive

Pa/POl = 0.2711 (expansion by 3° starting from pl/pol)

P3/Pol = 0.36M (isentropic compression by 3°)

Assuming the plate width at one cm, gives:

resultant force ~= (L-LI) ‘P3-P2) = 0.3436

Pol

resultant force per unit length= 0.0067

lift coefficient

drag coefficient

The pressure distribution on both
sre shown in figure

Instead of the

31.

5. Co~srison With

Ca = 0.0156

%? = 0.0008

sides and the

Exact Method

45

resultant pressure

lengthy calculations of all crossings snd reflections,
the linearized theory affords a quick md simple solution of the cascade
problem. At small singlesthe results sxe reliable and the errors small,
as seen from the comparison with the numerical exsmples in section 3,
chapter 111 and the preceding section.

Cs,(exact) - Ca(l~e~ized)
= -2 percent

Ca(exact)

The interference lines of the linear~zed solution within the cascade -
the Mach lines - sre included in figure 23 for comparison. It is seen
that the zones governing the resultant pressure are smaller by linearized
theory.

The’pressure distribution of the linearized example is also shown
in figure 25.
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CHAl?TERV. SCHLIEREN PHOTOGRAPHS OF

1. Cascade Geometry

A disturbance in supersonic flow is known

NACA TM 1369

CASCADE FLUW

to spread out only down-
stream of the source of disturbance. So the press&es and velocities
on one of the sides of a profile, stip~ated by the form of the surface,
are not influenced by the other side.

This property is used to represent the flow through a cascade con-
sisting of a number of infinitely thin plates. Two profiles with a flat
surface on one side are so assembled that their flat sides face each
other and are psrallel. The
the ssme as that between two

The two profiles can be
another, so that any desired
obtained.

flow between the parallel sides is exactly
adjacent plates of the cascades.

moved apart or shifted relative to one
ratio t/L smd any stagger angle caa be

The experimental cascade was patterned after the cascade h the
numerical exsmple of chapter 111, which had the same angle of stagger
of ~o. The Mach number of flow was - as in previous calculations -
M= 1.40; the spacing ratio was t/L = 0.517. The angle of attack $
ranged from-0°, 1.5°, 3° to 4.5°.

The maximum profile thickness was so chosen that no blocking of the
tunnel (section 2) was produced at the selected Mach number and that the
deflection of the profiles at maximum angle of attack is small.

Now at M = 1.40 the deflection due to compression shock, which
exactly leads to sonic velocity, is 5s = 90. As there is to be no sub-
sonic flow in the test section and since the angle of attack was assumed
at 4.5°, the leading edge of the profile may at most form an angle of
about 4°, which corresponds to the constructed profile.

The compression shock is not sepaated at the leading edge of an
infinitely thin plate or an infinitely sharp wedge of sufficiently small
included angle. Therefore the leading edge shall be as sharp as pussible.
It succeeded in attaining a thickness of 0.05 + 0.07 mm4 so that the

distance of the separated shock from the edge is scarcely visible.

The profile chord L was 118 mm, so that the cascade lies within
the tunnel window. Since the tunnel itself was 400 mm wide, the width
of the profile was limited to 398 mm, figure 32.

.

.’

+hl?it co., Affoltern, Z&ich.
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.

2. Experimental Setup

The previously described profiles were mounted in the test section
of the supersonic tunnel of the Institute5 on four supports (fig. 33).

‘Thecompression shock issuing from the leading edge of the top
profile could not be reflected at the upper tunnel wall at maximum ~,
because the deflection to be made retrogressive at the wall was too great
for the Mach number prevailing behind the shock. To avoid blocking in
this region, a bend had to be made in the upper nozzle wall (fig. 34).
The position of the bend was so chosen that the fan of expansions emanating
from it hits the cascade downstream from the entering edge. This adjusts
the wall to the flow direction after the shock to some extent as well as
raises the Mach number between the upper plate and the nozzle wall.

The Mach nuniberin the test section before the cascade was deter-
mined by pressure measurements at the upper, lateral, and lower walls.
The investigationwas csrried out at a moisture content of air of about
0.5 g water/kg air.

3. Schlieren Photographs6

The schlieren photographs illustrating the-flow through the plate
cascade at ~ = 00, 1,5° ~ 3° are represented in figures 36, 37,
and 38; Since a conical jet regime is involved, the photographs appear
as shadows of the profiles. Figure 35 show! the position of the optical
axis with respect to the cascade; it is seen that the shadows of the pro-
files sre distorted on the mirror. At the top profile the perspective
effect is more obvious, because the optical axis is closer to the bottom
profile.

The equality of Mach’s angle in figure 37 (~ = 0°) is indicative
of a unchanged Mach nuder in the cascade. The visible disturbances
within the cascade may be due to the fact that the plate surfaces do not
exactly agree with the flow direction, or to thickening of the leading
edges by a boundary layer.

In figure 38 ($= 1.50) the ~ter-erence ties i~ide the c~c~
ime almost parallel, as stipulated by the linearized theory.

5See Report No. 8of the Institute for Aerodynamics, at the E.T.H,
ref. 1.

6For description of schlieren apparatus see Report No. 8 of E.T.H.
Institute.
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.

At q= 3° (fig. 39) the deflection of the shock front at crossing
of the expsnsion wave emanating from the top leading edge is plainly
visible. Figure 40 represents sm enlargement of the crossing to illus-

.

trate the numerical example in chapter III. The interference lines inside
the cascade for this exsmple sre again shown in figure.41 at smaller scale
(compare also fig. 23), whereby the perspective effect is indicated.

In the majority of photographs the.retardation of the flow near the
tunnel wall leads to separation of the head waves.

The flow in all photographs is from left to right.
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CHAPTER VI. THE FLAT PLATE CASCADE

ANGLE-OF-ATTACK CHANGE

1. Problem

AT SUDDEN

Visualize a cascade of flat plates-in a flow with relative velocity W
at an angle of attack +. A supersonic flow which may be regarded as two-
dimensional prevails throughout the cascade. At a given moment the sngle
of attack of the atistream changes from ~ to ~’ within an infinitely
short time interval. The transition to the new state, which is to last
for a period, is analyzed.

Such a chsnge in the sngle of attack takes place when the cascade
moves in an absolute flow which has not the same speed at every point,
or when one of the velocity components of the flow, normal or parallel
to the plane of the cascade, varies with respect to time.

Resolving the velocity W in two components V and U (fig. 42)
normal smd parallel to the plates, the change of the sngle of attack,

. small in itself, can be regarded as a change of component V. This change
in V is obtained by superposition of a velocity VO, which has the samk

direction as V smd is obviously small compsred to V and consequently.
smaller than sonic velocity. From the assumption of a small angle of
attack, it follows that velocity component U remains greater than sonic
velocity. Besides, sn eventual variation of this component U is
disregarded.

The problem therefore reduces to the study of the new forces on the
cascade, resulting from a gust vo 7 which, together with the velocity U

enters perpendicular to the plates.

Biot (ref. 5) solved the problem of an isolated plate by means of
“unsteady sources.t’ This method is applied to the cascade problem. But
first the unsteady source is described in more detail. Since the plates
sre to be partly repkced by such sources, the pressures and velocities
originating from a source distribution are analyzed. Then Biot’s results
for the isolated plate me correlated and extended to the cascade. The
special case of straight cascsde (nonstaggered).is examined.

7W ,fwtll is meant a continued, uniform vertical velocity distri-
bution VO.

.
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2. The Unsteady Source

According to linearized theory, the general potential equation (5)
for two-dimensionalunsteady flow can be simplified to

P = flow potential.

For a system-of coordinates moving with velocity U(U/a = M), that
is, air at rest at infinity, this equation gives the acoustic wave equa-
tion for two-dimensionalmotion

a2q 252—-=—+ I a2~ o

ax2 ay2 a2 at2

One solution for a linear sound source is

(97)

.

.

(98)

@= ‘d ‘=
.-

where r = constant with dimensional length times

velocity.

This solution is rewritten in the form

g=klOge~~+~~)

= k loge

[(

*at+ r]
a2t2 - r2

1

‘-k’ogek+-)]
(99)

.

.
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.

It represents a cylindrical wave vexying in time rate. At t = r/a,
q = O, that is, if such a singularity appears in the zero point of the
coordinate system, its effect is diffused inside a circle of radius
r = a-t.

If such a source appears at the point (x,O) - on the x-axis - at
period tl, the potential in a point P(x,y) of the surroundings of this

source at a given period (fig. 43) is

T = k loge

[ ‘l) +*]

(100)

a(t -

In this case

r

and the following velocity.

.

When y is

mula (lOla)

i
= (X- XJ++

components are obtained by simple differentiation

a(t - tl)
=k~

~

(lola)

VX=2L=JX-XJ a(t - tl)

r2
a2(t - tl)2 - r2

small compared to

becomes

(lOlb)

%==

(101C)

a(t”- tl) - nesr the source - the for-

Vr = k/r
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the same as that of a steady wave in incompressibleflow,
denoting the strength of the source (dimensional length x

K=%

The pressure in the same point is computed by

4=

It will be noted that

in the source itself.
place on the x-sxis a

vy always equals zero for y = O,

NACATM 1369

hence with Q “
speed)

(102)

except at r = O

It means that such a source delivers at no other
velocity component parallel to the y-axis.

3. Pressure and

Arising

Velocity of a Periodically .

Source Distribution

Consider a continuous distribution of infinitely small sources over
the length OA (fig. 4-4)along the negative x-exis. The distance OA
increases linearly with the time: OA = U%, where U is a constant
velocity and the sources on the x-exis appear momentarily at the point
where A srrives at the moment. The strength of this source distri-
bution per unit length of OA is assumed equal to q (dimension of a
velocity) and remains constant in time.

(a) 13cessure “
At point

bution at time

p=

t~ the time of

?(x,Y) (fig. 44) the pressure p of the source distri-
T is, by equation (102)

J
Xl=opaq dx~

x xl=-Ut a2(t - tl)2 - (x - X1)2 - ~

origin of the source in point xl.

(103)

.

.
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With the folJowing vsriable transformation

C*=—
at

53

(104)

we get

The boundaries should be defined before the integral is evaluated.
For the function in the denominator is real only in the zone affected
by the source distribution; this is bound by the Mach ltie AM and the
circle with center O snd radius a-t. Hence the integration must be
made between the zero places of the function where it is real.

Posting

the new boundaries

(106)

are found at

-(~ + sin p) * (1 + sin y)2 - ~2cos2p
= (107)

-Cospp

To get an idea of the integrating process aa function of the posi-

tion of point P, ~1(1) and C1(2) are plotted in terms of ~. It

results in two curves of the second degree, which cross in point
Q(L,~I) (fig. 45(a)) whereby



54 NACA TM 1369

.

(108) -

The shaded area represents the r-e in which the integration should

be made. At small { values up to. ~ = \/”, integrate between ~1(1)

and ~1(2) (1) “ ~ uis. fifigure 45(b)and then between c1 and the

the integral limits are shown F ;ted in the x,y-plane for explanation.
The reason for not integrating over positive ~1 values is the absence
of sources in the right-hand half plane.

Two integration cases are differentiated

that is

and

-~-:;;s~s.t.x.-l-=F

-i~2t2 -y2<x <-t ~m

In the first instance the pressure integral is

I(109)
(110)
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But as cl(1) and g+) ere the solutions of the expression below
the root, it can be rewritten as

With the substitution

this integra18 gives

PC 1—=
Pw 2 Cos p

a formula that is independent of q = y/at.

(lSL)

(112)

(113)

In the second case, if point P is so situated that

it results in

8As long as the function In the denominator csn be brought, with
the aid of the integral limits, into the form of equation (ill), the
integral gives the same value.

.

.

.
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which after evaluation gives

%1 r (~ + sin p)
—= Cos-1

1

(115)
paq m Cos p

II
(1 + ~ sin R)2 - q2cos2p

1- -1

The ensuing pressure pattern along a line y = Constant is repre-
sented in figure 46. For each y the pattern consists of two pieces.
In the first piece the pressure is constant and equal to pc, that is,

along the length EF between the points where the Mach line emanating
from A and the circle with center O and radius a.t intersects the
line y = Constsmt. The second piece is composed of length

~’= -- =d O’G = +-) where the pressure is -i-
able; at G the pressure is zero. At y = yc the constant portion

disappears emd wherever y = at, the pressure becomes zero.

At y= O it represents

that is

Biot*s case tith the integral

and -l<g<+l

1
at

-—<x <-at and -at<x<+at
sin v

1

The pressure p= has the ssme value as before

Pc 1
Ezi= 2 Cos p

but the second piece of the pressure distribution becomes

PFO 1

[)

*+si.np
Cos-1

paq = 23iCos p
l+~siny

limits

(116)

(117)9

(118)

9q corresponds to Biot’s 2V0.
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It should be noted that a presisureeffect appesrs also outside the
mea in which the sources are distributed, because the source in O
affects the mea

In general,

Wide the circle a-t as mentioned

(b) Velocity Calculation

the velocity component.is defined by

before.

the titegration
of the portions stemming from a single source (eq. (101)). In our problem
the velocity Vy is of particular interest.

It becomes

q J’
Xl=o a(t - tl)y dxl

‘Y=~
Xl=-ut

[ 1/ [ 1
(X-X1)2++ a2(t-t1)2- (x-x1)2+~

.

lf r=i=== ‘s ‘w” Cow=ed‘0 a(t- ‘1))‘ht ‘s)* for the places close to the x-axis, this equation simplifies to

J’
Xl=o

vY’&

[
‘b’ ]+l(-)-+;]‘:)‘I=-m (x - XJ2+ yp

Letting y approach 0, positive y, the results for negative vslues
of x are

which may be designated by V. (as in Biot’s report).

For positive x values,
‘Y= 0“

(120)

It indicates that such a source distribution gives a uniform vertical
velocity vo over the distsmce of the x-axis where the sources sre. (For
negative y, inverse velocities result.)



58 NACA ‘m 1369

.
Biot mentioned this fact in his report and used it to calculate the

pressure distribution over a plate in a vertical gut (compare next sec-
tion). .

The same variable change as in the pressure calculation gives

The srguments

sure integral and

(m)

for the integral limit are the same as for the pres-

!.l(l);~1(2) iS given by equation (lo7)0 Integrating

between ~~
(1)

and {~2), that is, when

it is seen that the integral gives the value ~, so that Vy has the

constant Vo for this range of ~.

For the second case (--<~

indicates that10

r

—\
<+~1-f ) the integration

I I

This identifies the velocity distribution on the lines
(fig. 47).

(122)

Y= Constant .

10See note on p. 66. .
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From the calculation of the pressure and velocity distribution over
the lines y = Constsnt, it is apparent that the flow outside the circle

. of radius a.t is steady. This is true from the physical standpoint too,
since the gust front does not affect this srea.

4. Single Flat Plate in a Vertical Gust

(Biot 1945)

The flat plate AB of length Z at supersonic velocity U enters
a gust with the transverse velocity V. (fig. 48(a)). Stice the trans-

verse velocity on the plate must be zero (no flow through plate) an equal
and opposite velocity is superposed on the gust velocity vo in place

of the plate. This velocity can be visualized as reflection of the gust
on the plate (fig. 48(b)).

Since velocity U is greater thsm the sonic velocity, the sides of
the plates are not affectedly one another, so that one side of the plate
can be analyzed sepsxatel.y. The pressure acting on one side is exactly
the ssme as on the other, except with inverse prefix. As the interference.
velocity V. is much smaller than velocity U, the linearized potential

equation can be applied to the stream potential. Selecting a system of
,! coordinates that moves tith the velocity U, (eq. (97)) according to

which the disturbances are diffused with sonic velocity, can be applied
to the flow potential.

Biot’s method replaces the part AO of the plate struckby the
gust, by unsteady sources. This source distribution, which increases
in time, yields a uniform velocity V. normal to the plate, hence sat-

isfies the boundary condition on the bottom side of the plate.

If the plate enters the gust at time t = O, the distance at time t
is Ao= -Ut, the origin of the coordinate system being located in the
gust front.

The results of section 3 can be applied &lrectly, and the pressure
variation along the plate defined (fig. 49(a)). As it is dependent
solely on x/at the patterns me like those for the different Mach num-
bers. The total force on the plate - the lift - is obtained by integra-
tion of the pressure pattern. Three phases are involved here (fig. 49):

I (U+ a)t 5Z.

that is, the trailing edge is outside the effective range of the gust
frOIltj.



60 NACA !lM1369

II(U+a)t>2>(U-a)t

that is, the trailing edge is inside the
frent;

111 (U - a)t ~ Z

that is, the entire plate is outside the
front, hence is no longer exposed to WY

The integration gives the following

effective range of the gust

effective range of the gust
unsteady effect.

lift values of the three phases:l’

AI Ut a— =—= — t (123)
2pavoZ Z sin ~

A1l

2pavoz
.fl:sflos-.b(l-y co62p)]+:sin-l[*(+ -;!+j

(124) -

l-%he integral
..

appears in the calculation of A1 and A1l. With no boundsry, the solu-

tion is

which gives

I

()

=l’c-

& -1

between the limits -1 and +1.
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. (The sin-l to be taken between - ~ yt and + 1~lc.
)

‘III 1—= —
2pav~l Cos “~

(125)

In phase I and 11 the lift increases continuously with the time and
reaches a msximum in phase 111, where it becomes independent of the time.
In the last phase the lift is the sane as on a plate at angle vo/u ill
steady fluw.

5. The Straight Cascade

The cascade problem is unlike that of the plate to the’extent that
the plates mutually interfere. The sources replacing the portion of the
plate struck by the gust create a pressure on the adjacent plates. They
also produce a velocity vu, which in order to satisfy the boundary con-
dition of no through flow of the plate, mskes a chsnge in that source
distribution necesssry.

Since the disturbsmces sre small the solution of the single plate
can be superposed h the sense of the linearized theory of the ad~acent
plate effect.

As shown in sections 2 and 3, the unsteady source - and the source
distribution - which lies on the x-sxis, produces no vertical velocity
component along this axis, outside the distance, where it is.

This characteristic enables the velocity component Vy to be

replaced by an additive source distribution along the particular parts
of the plate, which gives the velocity at each point. The new sources
create a further pressure on the plate itself - and in general react on
the adjacent plates.

The total force - the lift - on each plate consists then of the
lift of the undisturbed plate (Au), the lift from the pressure ~ of

the sources of the adjacent plates (Ad) and the
source distribution due to velocity Vy.

Suppose that h is the plate spacing and
the straight cascade ff (fig. ~). The lines

lift (Av) of the new

L the plate chord of
AM... represent the
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Mach lines emsmating from the leading edge, where angle MD is the

Mach angle p = sin-1 u/a.

Then the following approximation is made: the relative flow and

the plate form in reality the an@e ~ = tm-l(vO/U). But as vo is

small compared to U, this ~ is negligibly small with respect to p,
and it can be assumed that the Mach line itself rather than the relative
flow direction forms the angle V. In this event, the Mach lines form
the same angle with both sides of the plate. The Mach lines emerging
from the leading edge strike both sides of the plate at the same distance
AE from the leading edge. At (h/Z) > tan u the points are not located
on the plates, and the plates do not influence each other. Consequently
the cases where (h/l) < tan w are exmnined.

At time t = O the cascade is directly in front of the gust; the
origin of the coordinates is placed in the gust front. In the first
time intervals of the phenomenon the disturbances have not spread out
enough to be able to influence the adjacent plates. As in fi~e 51,
the distance is
rsdius a-t do
are the same as

As soon as

a.t < h, so that the-circle; with center
O.md..

not touch the plates. Lift and pressure distribution
on the single plate.

.

t > his, the plate AB comes within the effective range ,

of its adjacent plates; “On fiG (fig. 52) the source distributions AiO’
and A“Of’ create an additional pressure which can be computed according
to section 3. The points F and G me then the points of intersection
of both circles with center O! and 0“ and radius a.t tith plate AB.
It is readily appsrent that the additive pressure on EF is constant and,
according to equation (113), has the value

Pc 1—= —
pavo Cos p

Ifq= h/at is inserted (y = h) in equation (115), the pressure
on FG follows at

The
‘=fi’s’os-’ll‘“’)
ensuing additive pressure is represented in figure 52.

.

.



NACA TM 1369

In addition, the following contition
velocities Vy = h created by the source

63

must be satisfied: The normal
distribution A’O’ and A1’O~t

sre reflected on EO, so that at that point the gust is pertly compen-
sated. The source distribution to be applied is to compensate the veloc-
ity (V. - Vy). The velocity Vy is computed as in section 3, and the

pressure ~ - alo~ the psrticulex plate - is obtained by integration
of the pressure contribution
ity Vy on a small distsmce

distribution per unit length

Along this srea of the plate
sure (compare section 2)

of each so~ce: Assuming the local veloc-
dxl to be constszrt,the yield of the source

on this small distsace is then q = 2v-y.

the

pavy
mpo = —

YI

hence

source distribution produces the pres-

‘% (u8)
2(t _ t1)2 - r2

‘+

(129)

with Vy periodically snd locally variable. It is best to solve the

integral graphically for each particular case. The arguments for the
integral limit are the seineas before. The lift contribution ~ at

my instant is obtained by integration of the ensuing pressure plot.

To obtain the resultant pressure, this pressure is superimposed on
the two previous pressure distributions.

In the following, the pressure contribution due to the additive
pressure ph is calculated. Three phases, depending on time and
ratio h/2, are involved:



J ti&t2-h2
%1 :Ut + Y

=2

( tan p)

J r+ a2t2-h2
pcdx+2

-P ‘h “

with the previously employed vsriable change and with y = h

J

-m

Id

+ l-qz

A@ = .at
- ut+y/tan p

PC d~ + .at

at -P “g

By equation (127)

hence the integral

.

.

.
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Its evaluation gives

I=-
fi

[

(Cos p- 1) 1+9:C:C:S+V1) 1 (132)
sin p cos w

consequently

(
~1

I
t—=

\
(1-q cosp)+(cos v-1)

2pa2~ sin p cos p
(

1+ 1]q(cos ~+ 1)

(Cos p+~)

(133)

11. But if (fig. 53)

the evaluation of the integral gives the formula

2pavo

~ {[

q sin-l-s-
l+AS

e

sin-1 _
fish ~cosp -1

A+S
(1‘:’-&-

[ ( )1~

l+BS _l_ B
(n - cos V) sin-k - sin-l —

& -1
B+S

‘: G

(134)
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‘=+=

The pressure pe is obtained from equation (’E7), when x = (2 - Ut)

is inserted, at

k (z -Ut
Pe _ 1 + sin p

Cos-1 at )

1

(135)
pavo n Cos ~

( )

‘2 h2
l+~sin~ -— Cospp

at a2t2

111. If 22 (U- at), py=pc along the entire distance m, so

that the additive lift

(136)

reaches a value that is independent of the time.

Note on the Velocity Integral

By a simple transformation the integral can be rewritten in the
following form:
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This int~~al can be solved by means of tables (Integral table,
Part I, by Grobner and Hofreiter, Springer Co., Wien). Although the
general solution is quite complicated, the result is found to be inde-
pendent of ~1, once the limits have been inserted.

Bearing in mind that the integration limits sre the solutions of
the function below the root, the integral is rewritten as function of
the limits

(2) (1- ~~stip)d<~
p~l ~ -1

The following substitutions are made consecutively:

l.X=l-~~sin~

The lhnits are thus Xl and X2 (X2 > XI).

.

3. z = Y(XZ + x~)/(x2 - xl)

4.t=z’2

5.s=2 A’ =
A’+t

4X1X2 - Cospll(xl+ X2)2

“ COS2V(X1 - X2)2

6. Numerical ample

Dimensions of cascade h/Z = ~“55

. Mach number of flow M= 1.414 (= ~z) corresponding to a

Mach angle v = 430
.
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The period te up to the end of the phenomenon is determined by

(U - a)te = Z

whence

te= z
O.414a

All time intervals are referred to y/a in order to obtain a dimen--.
sionless ratio (= l/~). Then

te
—= 4.38
y/a

The three pressure contributions

the formulas of the preceding section
by the digits O, 1, 2, 3, . . . 10.~

(y = b)

Pu, phj and pv are defined by
.

at vsrious time intervals indicated
The time intervals were chosen as w

follows: The time interval denoted by 3 represents the end of the first
phase of the undisturbed plate (compare section 4). At q = 1 (period: h)
the influence of the adjacent plates begins and ends at” ~ = 0.244
(period: 9). At ~ = 0.707 (period: 6), the Mach line emerging from the
leading edge of the plate strikes the adjacent plate.

Figure 54 represents the position of the gust front and the area
disturbed by it at the different time intervals.

Figure 55 illustrates the

Figure 56 illustrates the

The pressure contribution
distributions vy/vo required

pressure of the undisturbed plate pu.

pressure contribution ph.

~ is computed graphically, the velotiity

for it sre obtained by equation (I-22)for

the time intervals 5, 6, 7, 8 and reproduced in figure 57.

l%he corresponding curves in figures 55, 56, 57, 60, and 61 are
denoted by the same digits. .

.
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Since the integrand

f=
who

r

() tl”*
1 .— _ (~ - !1)’2t

69

becomes infinite at the two limits ~1(1) and ~2(2) which are, as

known, the solution of the function below the root, the graphical solu-

tion is continued to
(
gl(l)

)( )
-e and ~1(2) -.’ where G, .’ sre small

real values in compsxison to ~l.

Figure 58 represents several of the functions f for different tire
intervals.

, The integration over G and 6’ is made analytically, by putting
vy/vO = constant mean value.

The relation for tl/t’ at

source distribution is bound by

If the source
a similsr relation

tl/t = q

distribution

tl/t = q

is applicable (fig. 59).

v < 0.707, that is, when the additional

a Mach line, is

cos M + c1 sin v

is limited by the circle of radius R = at,

cos p + gl sin P

Figwe 60 represents the pressure contribution pv, figure 61 the

resultant pressure distributions.

The lift of the plate (fig. 62) is obtained by graphical integration
over the resultant pressures. At the appearance of the adjacent plate
effect the lift decreases with the time interval; A’ represents the
steady lift of the undisturbed plate.
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Figure 63 shows the moment distribution M plotted against plate
center; Mst represents its steady value. Here the moment increaseswith

the time because of the built-up negative pressure from t = h/a.

.

.
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CHAFTER VII. EFFICIENCY OF A SURERSONIC

1. Introduction

71

PRoPmLm

The cascade efficiency defined from thrust and tangential force is
suitable also for the propeller. But in the preceding srguments the flow
was assumed parallel and the blades as i@initely thin plates, which now
must be modified. The friction at the plates must be allowed for and
the infinitely thin plates replaced by profiles of finite thickness.
Then the results me used to calculate the efficiency of a real propeller
in order to obtain an approximate picture of the efficiency to be expected.

2. Effect of Friction on Cascade Efficiency

When the friction at the plate surfaces is
resultant force K without friction defined in
supplemented by an additional resistance F, SO
force acting on the plate (fig. 64).

taken into account, the
chapters III and IV, is
that K’ is the total

The frictional force is psxallel to the plate. But since its com-
ponent normal to the airstresm direction is small at the angles of attack
in question, the total frictional force cm be tisumed to be in the flow
direction.

The drag coefficient is expressed by

c;=&+2c’ ( 137)

F
Cf ..— is coefficient of friction of one side of the plate end ql

2ql

is dynamic pressure of inflow.

The lift coefficient remains

4$

Ca=b=

as for psrallel flow.

(138)
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According to the definition introduced in chapter-lll, the cascade
effic~ency is

(139)

where S’ and T’ are the thrust and tangential force corresponding
to the new force K’.

In terms of angles p, ~ and a (fig. 64) the efficiency is

? = tanatan(~ - 4)

where

Introducing the drag/lift ratio

(140)

(141)

the efficiency ~ becomes

1 - e’ tatl(p - $)
0 = (142)

1+ e’/tan(j3 - *)

Hence it is apparent that, contrsry to the esrlier results, the
efficiency is now dependent on the Mach number.

.

.
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With the assumption of a turbulent boundary layer

(143)

according to Schlichting, where Re is the Reynolds number based upon
chord 2 and relative velocity w.

The values plotted in table 9 and figure 65 as functions of the
angle of stagger were calculated with the Mach numbers M = 1.40 and
M= 2.50, then at an angle I = 3° and the optimum angles13 ~ = 2.65o
(M= 1.40) and ~= 4.11° (M= 2.50). The Reynolds nuniberassumed at
Re = 106 corresponds to cf = 0.0045.

The effect-of friction is illustrated in figure 65, along with the
efficiency curve for * = 3° with friction discounted.

3. Effect of Thickness

To assure minimum wave resistance the contour of a supersonic profile
must consist of straight lines and its msximum thickness lie in the center,
hence a double-wedge profile is recommended (fig. 66).

By linearized airfoil theory (ref. 1) the thickness causes a drag
which increases quadraticallywith the thickness ratio d/2, and which
can be directly superposed on the lift coefficient and the frictional
drag

with

of the plate.

Hence the drag
friction is

!!

Cw

coefficient of a profile of finite thickness ratio

[‘&”+(:s+c-1 (144)

But the lift coefficient remahs unchanged

ca=&
. 13

As stated in the introduction, WPt=l~ ‘or
d/2 = O.

Y
the plate, obviously



and the drag/lift ratio to be inserted in equation (“141)in place of e’
.

is

( 145)

!- -1

Table 10 shows the efficiencies of two cascades of double-wedge
profiles and the relative msximum thickness ratio

d/1 = 0.05 and 0.10 - with friction

at M= 1.40

$=30

Cf = 0.0045

These values are also shown in figure 67 together with those for
d/Z = O (the plate) for compsxison.

The emgle of s+agger $ - with friction and finite thickness -
for msximum efficiency at fixed angle of attack and fixed Mach number is
found by simple differentiationat

(P~H= tan-l- 6* r)++1 (146)

(
S450+ *-

)
; tall-%

4. Appraisal of the”Efficiency of a Supersonic Propeller

On a supersonic propeller the blades are struck at a relative speed
which at every point of the blade is greater than the sonic velocity.
Two types of propellers are differentiated. The one moves forward at
supersonic speed, so that supersonic speed occurs at every rpm and every ~.
On the other the supersonic speed is reached without it having to move for-
ward with supersonic speed. The efficiency of the first type propeller
is calculated.
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.

The propeller has a forward speed v of about 406 m/see (M = 1.20 -
sonic velocity a = 338 m/see); it has four blades of 2m outside diameter
and h inside diameter and 0.5 hub ratio. The cross section of the blade
is a double-wedge profile, with maximum thickness ratio of d/7 = 0.07
at the hub, and tapering to d/Z = 0.05 at the tip.

The msximum efficiency of a profile is reached with ~ = 450,
according to chapter III. At the blade tip where the thrust is highest,
this condition gives a tip speed of 400 rn/see;that corresponds to
3,820 rpm. For reasons of strength the blade chord tapers from LN = 40 cm

at the hub to LS = n cm at the tip.

In each coaxial cylindrical section - with respect to the propeller
axis - the angle between the relative flow direction and the profile sxis -
the angle of attack - was assumed at Vopt (compsre introduction). To

.

satisfy this condition, the angle of stagger in
the angle between profile axis and direction of
be varied. The relation

. must be satisfied.

With reference

tan(p - *) = v/u

each section, tht is,
peripheral speed U must

to a system of coordinates fixed in space, each point
of the propeller moves on a helical line. Disturbances issue from each
point which at the assumed pressure conditions and sngles of attack can
be regsrded only as sound disturbances. The zone disturbed by each blade
is then l~ted by the enveloping curve of all spheres whose centers lie
on the various helical lines and whose radii at the ssme time &me equal
to sonic velocityx time. Figure 68 represents the disturbed zone of
an edge OA, which, for example, moves at a forwsrd speed of 1.2 X a
snd whose msximum tip speed equals the sonic velocity; O’A’ represents
the position of the same edge after a t~ interval At, which corresponti
to a fourth of a revolution.

Considering that the blades me twisted, that the disturbances of
different sections can influence one another and be reflected on propeller
hub, it is readily appsrent that an exact calculation of the forces on
each blade represents a difficult problem. When each blade is outside
the zone of disturbance of the other blade, the blade can be examined
separately. Assuming homogeneous flow and coaxial cylindrical areas,
that is, radial equilibrium, the blade forces can be determined from a
two-dimensional consideration of the developed blade (fig. 69), by com-
puting the lift and drag and from it the thrust and tangential force in
each cross section by li.nesrizedtheory.

.



76 NACATM 1369

At the velocities selected the boundary effect is confined to a
.

moderately lsrge zone compared to blade srea, so that its effect wdthin
the framework of the intended appraisal on the total forces can be
disregarded.

The thrust of the whole blade is then

J
tip M

‘blade = —&r
hub b

The integration is made by graphical method (fig. 71(a)) with

CO.[(P -Y)+ 7]

Cos y

( 147)

(148)

computed for five sections (fig. 69).

The correspondingReynolds number for all sections was assumed at
Cf = 0.004 (turbulentboundary layer).

The torque D of a blade is defined the same way as the thruet
by integration (fig. 71(b)). The following

The characteristics
The integration giveS

relation applies:

( 149)

for the five sections are correlated in table 2.

‘blade = 425 kg

%~e = 6W @/m
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hence for the propeller

s = 1703 kg

D= 2400 kgm

The efficiency of t% propeller is given by

Sv
7 =—

‘2YtnD

with the values inserted gives

77

n = 71.8 percent

A quick and close estimate of the efficiency is obtainable directly

from the calculation of
(:)M a ~)M

, where these values are appli-

cable to the whole blade.

Smb’llxm

1. Lift and drag coefficients for the flat plate at vsrious Mach
numbers, ranging from 1.20 to 10, snd for different angles of incidence
~de calculated, account being telcenof the exact flow over both sides of
the plate. These vslues are tabulated and also given in the form of
charts. The sane coefficients are also calc~ted under the assumptions
of linearized flow over the plate, according to the Ackeret theory. A
comparison of both methods shows reasonable sgreement between the lin-
earized theory and the exact method within the usual rsnge of angles of
incidence (ma% 10°) and for the usual Mach numbers. Special formulas
for calculating the lift and drsg coefficients for very high Mach num-
bers sre derived.

2. An analytical solution of the problem of the interaction between
shock waves and expansion waves has been established.

~. A method for calculating the lift and drag coefficients for a
cascade of flat plates is described and applied to an example, with the
aid of the formulas derived in the foregoing item. A definition for the
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efficiency of the cascade - without friction - is introduced and the
efficiency is evaluated for two Mach nuxibersand different angles of
blading.

4. A linearized theory for supersonic flow through a cascade of flat
plates is established and applied to the example already treated. Com-
parison of the lift coefficients shows reasonable agreement.

5. For demonstration purposes, schlieren photographs were made showing
the flow between two flat surfaces. They serve to confirm the “established
linearized theory for small angles of incidence and show clearly the inter-
action between shock and expansion waves.

6. Under the assumption that the flow through the cascade of flat
plates undergoes’a small sudden change of direction, that is, a small
change in the angle of incidence, the nonstationary flow in the cascade
is discussed to show the kind of forces which act on the plates during
the tramition period. An example has been calculated in detail.

7. The definition of the efficiency mentioned in 3, is especially
suitable for application to a supersonic propeller. The effect of fric-
tion and blade thickness on that efficiency is shown. A rough estimation
of the efficiency of a supersonic propeld.eris th% made.

Translated by J. Vanier
National Advisory Committee
for Aeronautics
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!rABLE1

.

.

Ml 8~o 7s0 P1/P() dPo dP~

1.00 0 0.52830 0s36981 0.700
1.10 1.40 :.68 .46835 ● 39704 .e47
1.20 3.70 68.08 .41238 .41567 1.cQ8
1.3 6.32 65.12 .36092 .42689 1.183
1.40 9.03 63.33 .31424 .431.14 1.372
1.X Il.67 62.25 .272ti .43050 1.575
1.60 14.24 61.65 .23527 .k2182 1.792
1.70 16.63 61.37 .20259

● b995 2.023
1.20 18.84 61.28 .17404 .39472 2.268
1.90 20.q 61.35 .14924 “.37714 2.527
2.00 22.71 61.48 .127&l

● 35750 2.@o
2.20 25.9Q 61.90 .09352 .316% 3.388
2.50 29.67 62.40 .05853 .25610 4.375

34.01 63.77 .02722 .17143 6.300
::: 38.75 65.25 .00658 .07375 11.20

41.11 66.20 .00189
2::

.03306 17.50
42.44 66.75 .00063 .01588 25.20

8.(x) 43.79 67.00 .00010 .w448 44.W
10.CO 44.43 67.I2 .00002 .00165 70.00
w 45.58 67.70 0 0 m
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TABm 2

LIFT AND DRAG COEFFICIENTS

.

.

Ml p P@?(3 Yo P2‘/P~ P2‘/P() ca c~ E

1.20 1 0.39145 58.75 1.056 0.43527 0.109 0.0018 0:Ol:;
2 .37210 61.10 1.120 .k6187 .2158 .0075

.35403 64.37 1.199 .49444 .3373 .0177 .0524
?.7 .35952 68.08 1.277 .52681 .4011 .0259 .0641.

1.40 1 .29910 46.87 1.051 .3X27 .0723 .0013 .0175
2 .284&l 48.19 1.104 .3A692 .1440 .0050 .0349

.27u4 49.57 1.159 .36420 .2156 .0113 ::%;
? .27324 51.15 I.219 .38306 .2888 .0202
6 .23376 54.62 1.353 .42517 .4415 .0464 .1052
8 .211w 59.36 1.527 ,.47984 .6168 .0%7 .1406
9.03 .20050 63.17 1.655 .52007 .7321 .1159 .1584

1.60 1 .22374 39.67 I.060 .24939 .0608 .0011 .0175
2 .2u69 40.73 1.104 .25978 .1116 .0039 .0349

.20207 41.82 I.161 .273CX) .1679 .0088 .0524
z .19191 42.93 1.219 .2%79 .2244 .0157 .0699
6 .172~ 45.36 1.345 .31637 .3385 .0356 ;100
8 .15525 48.04 1.484 .34938 .4357 .0641
10 .13914 51.14 1.644 .3%85 .5783 .1019 .1762
12 .2.243854.89 1.832 .43101 .7110 .151d. .2125
14.24 .11022 61.65 2.143 .50418 .9052 .2332 .2532

1.80 1 .16503 %.64 1.054 .18352 .0468 .0008 .0175
2 .15640 35.53 1.110 .1.9318 .0931 .W33 .0349
3 .14813 36.48 1.170 .20363 .1404 .0074 .0524

.14019 37.44 1.230 .21407 .M67 .0131 .0699
: .12534 39.49 I.362 .23704 .2814 .0296 .1051
8 .11175 41.69 1.505 .26193 .3768 .Opg .1406
10 .09935 44.06 1.661 .28908 .4734 .0834 .1763
12 .08206 46.70 I.835 .31936 .5732 .1218 .2=6
15 .07303 51.35 2.139 .37227 ;;32; .1962 .2679
18 .06011 58.oQ 2.551 .44398 .W5 .3249
18.84 .05788 61.28 2.7ho .47687 1.~45 .3427 .34U2

2.00 1 .w76 30.82 1.058 .13521 .0404 .0007 .0175
2 .11401 31.65 I.U8 .14288 .oe07 .0028 .0349
3 .10757 32.58 1.181 1.15093 .1211 .063 .0523
4 .10141 33.40 1.247 .15937 .1618 .0113 .0699
6 .08994 35.24 1.377 .17726 .2429 .0255 .1051
8 .07949 37.22 1.339 .19668 .3246 .0456 .1406
10 .07005 39.32 1.707 .21815 .408 .0719 .1763
12 .06149 41.59 L 889 .24141 .4923 .1046 .2E5
15 .OP24 45.34 2.195 .2&52 .6222 .1667 .2679
18 .04070 49.78 2.555 .32653 .7604 ..2471 .3249
21 .03265 55.67 3.014 .38519 .9207 .3534 .3838
22.71 .02886 61.M3 3.460 .44219 1.0659 .4462 .4187

.

.

.

.
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2.50

p.oo

10.03

m

N

*o

1.
2

i
6
8
10
12
15
18
22
28
29.67

2:$
10.68
16.60
20.21
26.78
51.21,
36.29
kl.11

3.21
7.65
13.31
18.53
23.47
28.17
52.59
36.64
40.18
42.$)0
44.43

8.37
16.57
24.x
28.31
32.05
35.55
38.81
41.6
43.9
45.58

5
10
15
20
25

$“

$
w

P@o

0.05296
.051.13
.0kTT2
.04450
.03857
.03455
.02859
.02~5
.01917
.01484
.01035
.03575
.00482

.00U8

.0CQ84

.am43

.00318

.0X09

.m2

.Omoog

.000003

.000901

TABLE 2.- Concluded

LIFlANDDRAGCOHC-S

70

24.35
25.05
25.82
26.62
28.27
y3.03
31.85
33.81
36.95
40.40
45.62
56.35
62.65

14
16
20
26
30
38
44

%

8
E
18
24
w
36
42
48
54
60
67.L2

10
20
30
35
40
45
w

z
67.8

P2’/Pl

1.068
1.Ikl
L 216
1.296
1.k52
1.658
1.%5
2.091
2.467
2.895
2.557
4.885
5.602

1.541
2.051
3.247
5.436
7.129
10.893
13.913
17.953
24.206

2.091
4.877
10.981
19.135
29.o18
40.164
52.oEn
64.263
76.213
W.361
98.713

%?’/m

0.06251
.06678
.071.17
.07585
.0&98
.09704
.10916
.x232
.14439
.16949
.20816
.28592
.44220

.w291

.00388

.oi1614

.01027

.01347

.02059

.02629

.OSS92

.04575

%

0.0373
.0611
.0914
.U221
.m%
.2416
.%98
.3738
.4723
.5742
.7162
.5659
1.0960

.0523

.0914

.1698

.2926

.3800

.5557

.6Eb5

.&84
1.0427

.0228

.0614

.1549

.2613

.3&8

.5079

.6288

.7488

.85Q

.9529
1.0=5

.0497

.1873

.3795

.4741

.5&3

.68U2

.7840

.m35

.gk7E
1.0031

.0152

.0594

.1294

.2198

.3238

.4350

.5389

.6331

.7068

.7547

‘%

0.0036
.0021
.0048
.0085
.ol@
.0340
.0536
.0795
.3.266
.1865
.2893
.5135
.6240

.(X)33

.0098

.0319

.0%9

.1393

.2792

.4088

.&)48

.SQ98

.0013

.0082

.0365

.087’7

.1662

.2726

.4017

.5565

.7292

.8862

.9925

.m73

.0558

.1731

.2559

.%62

.4846

.6W

.7754

.91.23
1.0204

.m13

.o1o5

.0347

.Oml

.1509

.2500

.3772

.531.1

.7068

.8992

0.0175
.0349
.0524
.0699
.1051
.1406
;;76~

.2679

.3249

.4040

.5317

.5695

.0627

.1076

.1879

.2972

.%66

.5024

.6003

.7501

.8726

.O%a

.1340

.2356

.3351

.4*1

.5366

.6393

.7437

.Wl

.9293

.9833

.1471

.2973
;455

.6261

.7146

.8042

.8876

.9623
1.0200

.0875

.1763

.2679

.3640

.4663

.5774

.7002

.8391
1.oOoo
1.1918
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1.10
1.2Q
1.X
~.ko
l.~o
~..60
1.70
1.E!Q
l.$a
2.00
2.20
2.50
3.00
4.00
5.00
6.00
8.00

10.00
m

NACA TM 1369
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TABLE 3

LIFT AND DRAG COEFFICIENTS OF THE EOUNDARY CURVE

1.4
3.70
6.32
9.03

u. 67
14.24
16.63
18.84
m.a
22.71
25.90
29.67
34.01
38.75
41.11
42.44
43.79
44.43
45.58

P2po

0.43110
s35952
.26668
.20050
.14392
.11022
.07918
.0578a
.04047
.02886
.01417
.00482
.00073
.000014
.000001

0
0
0
0 I

~; ;4

65 7
63 10
62 15
61 39
61 22
61 17
61 21
61 29
61 54
62 39
63 46
65 15
66 12
66 45
67 0
67 7
67 41

P2‘/P~

1.1X
1.277
1.457
1.656
1.894
2.143
2.439
2.741
3.097
3.460
4.250
5.602
8.385

15.25
24.40
35.25
63.II
98.90

P2 ‘/P()

0.52924
.52681
.525%
.52009
.51593
.50418
.49412
.47687
.46220
.44219
.38746
.44221
.22824
.10060
.04612
.02231
.00630
.00233

0.2471
.4011
.6Q35
.7321
.8339
.9052
.9697

1.0045
1.0449
I.0665
1.0883
1.0960
1.0735
1.0650
1.0515
1.0362
1.0171
1.0121
l.oo~

Cw

0.0104
.0259
.0668
.1159
.1724
.2297
.2&7
.3427
.3983
.4465
.5284
.6242
.7243
.8551
.9107
.9432
.9692
.9895

l.ol@

0.0248
.0641
.1107
.ly34
.2068
.2532
.2988
.3412
.3812
.4187
.4855
.5695
.6747
.&25
.%52
.9136
.9601
.9&13

1.0200

.
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TABLE 5

NACA TM 1369

.

.

Ml @ (caG - cm ) caG (CT/G- %rL) CWG

1.40 1 0.00084 0.07228 0
2

0.0013
.00151 .14399 0 .0050
.00163 .21555 .0001 .0113

2 .00385 .28881 .0002 .0202
6 .01408 .44152 .0010 .0464
8 .046$10 .61682 .0072 .0%7
9.03 .08g~ .73209 .0148 .1159

5.00 : .0005 .0523 .0009 .0033
.0030 .0914 .0010 .0098

12 .0255 .1698 .0063 .0319
18 .0696 .2996 .0246 .08!59
24 .1391 .3890 .0341 .1393
w .1846 .5557 .1433 .2792
36

● 3972 .6~5 .2698 .4088
41.11 .466g .8284 .4895 .6048

.
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1=Region

L

1
2

;

;

7
8
9

10
11
E
13
14
15
16
17
18
19
m
21
22
23
24
25

P/Pol

0.31404
.3645
.2991
.3455
.2848
. 33Q4
.2711
.3139
.3285
.3139
.2985
.2999
.2850
.2708
.3624
.3445
.3295
. 3X24
.3276
.3134
.2972
.2996
.2842
.2696
. *1O

TABLE 6

M

1.4004
1.293
1.435
1.332
1. 46g
1.364
1.503
1.401
1.368
1.M1
1.436
1.433
1.468
1.504
1.154
1.334
1.366
1.4Q4
1.370
1.402
1.439
1.434
1.483
1.507

45.5
50.6
44.2
48.8
42. g
47.1
41.7
45.7
47.0
45.6
44.1

&
41.7

iii
47.0
45.4
46. g
45.5
44.0
44.8
42.8
41.6

1
.9996

1
*9997

1
● 9997

1
.9998
.9997
● 9997
*9997
.9997
● 9997
● 9997
.9982
● 9997
.9997
.9997
.9998
● 9997
.9997
.9997
● 9997
● 9997

.

.



86 NACA TM 1369

TABLE7

(a) Angle of deflection and
shocks between the zones

shock angle of the

Regions

;::
5.6
7-8
8-15

IL- 16
13-17
14-18
M-25

Angle ofi~flection

3.00
3.03
2.93
2.93
2.93
2.92
2.90
2.93
2.93

Shock angle
P

49.57
47.91
46.48
45.13
49.43
47.78
46. b
45.03
49.30

Regions

1-3
2-4

~:;

2:;
8-11
g-lo

10-11
10-12
11-13
12-13

.

.

(b) Intensity of expansion waves
between the zones

Intensity
L!@’

1.00
1.03
1.00

.89
1.03
1.00
1.00
1.01

.92
1.00

.92

.91
1.02

Regions

13-14
15-16
16-17
16-19
17-18
17-20
18-21”
19-20
20-21
21-23
22-23
23-24

Intensity
2%0

1.02
1.00

.88
1.00
1.06

● 99
1,00

.89
1.05

.89
1.05
l.o~

.

.
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I

!L’ABU8

CASCAOE EFFICIENCY q PERCENT = f(~,~) (NO FRICTION)

.

.

po for max. q 45.5 46.5 47.5
~-, percent 96.3 90.2 83.7

I

=-l-=
29.72
63.4
73*5
77”3
78.2
76.5
71.4
57.65

48.4
63.1
68.8
70.4
68.8
63.1
48.4

I

48.5
78.2 g::

I

#

I
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.

.

TABLE 9

CASCADE EFFICIENCY WITH FRICTION ALLOWED FOR

M= 1.40 I M= 2.50

35.8
g.;

82;~
82.6
&).5
74.7
57.8

57.0
g.:

82:8
82.7
E!O.6
74.6
57.2

44.1
63.9
71.2
73*9
73*5
69.9
60.6
33*5

41.1
63.7
71.8
74.8
74.7
71.8
63.8
41.4

.

.

.
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mELE 10

CASCADE EFFICIENCY WITH DOUBLE-WEDGE PROFILE AND FRICTION

M= 1.40 $=3°

.

.

d/Z = 0.05 I d/Z = 0.10

45.53
65.28
72.52
75.11
74.83
71.50
62.71
37.18

2$).04
47.22
;:. ;;

54:82
47.31
29.25
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TABLE 11

NACA TM 1369

.

Section

Radius, rm . . . . . . . . . . . .
Profile chord, m . . . . . . . . .
Thickness ratio, d/1 . . . . . . .
Mac. thickness, dm . . . . . . . .
Tip speed, um/sec . . . . . . . .
Relative velocity, wm/sec . . . .
Relative Mach number, M . . . . .

[
Angle of attack, ~opt. ~ . . . .

Lift coefficient, ca . . . . . . .

Drag/lift ratio, ~ . . . . . . . .
Glidingangle, ~ . . . . . . . .
Stagger, j3° . . . . . . . . . . .
dS/dr,kg/m . . . . . . . . . . .
dD/ti,kg. . . . . . . . . . . .

1
hub
N

o.5m
0.4%
0.070
0.0315

45:
1.339

0.0818
4.67

0.3672

0.1637
9.30
68.8
612
1026

t

3
2 center

M

0.625 0.750
0.425 0.4-00
0.065 0.06
0.0282 0.024

250 300
476.8 504.6
1.411 1.493

0.0787 0.0761
4.52 4.38

0.3164 0.2745

0.1572 0.1523
8.95 8.66
6~i: 37*9

825
1118 1173

4

0.875
0.375
0.055

0.0206

532%
1.5e6

0.0742
4.25

0.2407
o.14e4

8.43
53*5

878
12X2

5
tip
s

1.(300
0.350
0.050

0. O;g

570.0
1.687

0.0721
4.13

0.2120

0.1442
8.21

49g:

1.224

.

.

.

.
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A
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/
/ ,~

~M,U, -

P2M2 U2

/////
A

Figure 1.- Expansion around a corner.

s

u;

u,

B

A
////

E%

Figure 2.- Obliquecompression shock.
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Figure 3.- Shock and flowdeflectionanglesfor M2 = 1.
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Figure 4.- Flatplatein supersonicflow.
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(a) Dynornic pressureistaqnation pressure

(b) Dynamic pre.ssurel inflow pressure

Figure 5.
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Figure 6.- Liftoftheflatplate.

.

.



NACA TM i369

0.6

0.5

Cw

0.4

0.3

0.2

0.!

o 5 10 {5 20 25 30 35 40 45°

+0

Figuxe 7.- Drag offlatplate.
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Figure 8.- Polarsofflatplate.
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.
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0

Figure 9.- Flatplateinlinearizedflow.
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I

,

Figure 10.- Liftby linearizedtheory.

.

.



98

.

O*5

Cw

04

c13

0,2

0.1,

I

M= .4, -,

.Uliiiie

--E+

&
M =1.

/
/

=1.&
/

o 5 10 15 20

Figure 11.- Drag by

2>,\\\\\\
25 30 35 40

+0 40

.

.

.



. , + , ,

----- Characteristics

— Shock polor

(a) (b) p,> p.
\

_-J-=-J-= “:,.
\\

(c) (d)
S = Blade

(a] Overtaking

(b) Grossing (in free jets)

(c) Reflection

(d] Cascode flow

Figure12.- Interactionbetweenexpansionwaves and compression
shocks.
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Figure 13.- Small expansio~

/

B

u,
d

/////

A E 8

Figure 14.- Smallvariationforone compression shock.

1

(o) (b)

Figme 15.- Compression shock overtakenby expansionwave.
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----- Ghoracteriqics

— Shock polar

Figure 16.- Schematic representationof the

101

graphicalsolution.

2

A@

o 8

Figure 17.- Reflectedwave disregarded.

/ lJi

(a) . (b)

Figuxe 18.- Expansionwave crosses compression shock.
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Figure 19.- Schematicrepresentation

‘1

ofgraphicalsolution.
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Figure 20.- Crossingofexpansionwaves.



NACA TM 1369 103

.

ad compression shocks.

A’ #\ A/

Figure 21. - Reflectionofexpansionwaves

‘i

Figure 22. - The cascade problem.



-

\

\

1

\
A\ 11’g

14

1

Figure23.- Cascade example.
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0,2

0
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0 0,1 0,2 0.3 0#1 0.5 0.6 0.7 0,8 0.9 1.0

llL
Pressure at upper side

----- Pressure at lower side

/////// .Resultant pressure
Resultont pressure by linearized theory

Figure 25. - Pressure variation along the plate (exact method),

Figure 26. - Definition of thrust ad tangential force.
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NACA ‘l?M1369
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“Figure27. - Cascade
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efficiency (no friction).
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Figure 28. - Linearization of crossing.
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.
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Figure 29.- Linearizedcascadetheory.
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Figure 30. - Numerical example of linearized cascade theory.

P/Pn

QG‘

09
--—-.--

0.2

0 m ~

-0.2-
0 0.1 ().2 (3.3 0.4 0.5 (3.6 0.7 0.8 0.9 ~.~

1/P
______ pressure on upper side

— Pressure on lower side

////// Resultant pressure

Figure 31. - Pressure distribution over plate by linearized cascade
theory.
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.

.

Figure 32. - The profile.
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Figure 33. - Profile in test section of tunnel.

n.. I I
I

r“’”
I 1 1 r 1 I

I =

A Tunnel axis
W Tunnel wall
F Window
P Profiles

Figure 34.- Schematic

s
v
K
E

representation
wall.

supports
Compression shock
Bend
Expansion branch released

from bend

of the bend in the up~r tunnel
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s

~H
K-------------------------------_——____

)
-----—---------------------------.------..--.---------.--.----------------+0-_---7*——-

----. ----. -— —----—---

‘~
0 Light source S Mirror
K Tunnel P Profiles

Figure 35. - Position of optical sxis and shadow formation. x = 8 cm;
y= 4.5 cm; Z = 300 cm.

Figure 36. - Profile at starttig.

Figure 37. - Sclitieren diaphragm vertical. Y = OO.
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Figure 38. - Schlieren diaphragm vertical. V = 1.5°.

Figure 39. - Schlieren diaphragm horizontal. V = 3.0°.

. 1
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Figure40. - Photograph of crossing.

\ \

‘\

Figure 41. - Perspective distortion of figure 23. For comparison with
schlieren photograph in figure 39. (O represents the position of
the light source; the finer lines represent the shadow boundaries of
the plate and interference line s.)
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Figure 42.- Sudden change in angle of attack.

43. - The unsteady source.
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Figme 44.- The periodically created source distribtiiom
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Figure 45. - The integration limit.
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Figuxe 47. - Velocity distribution

I

at y = constsnt lines.
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Figure 48. - The flat plate in a gust.
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Figure 49, - Pressure
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distribution slong the plate.
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Figure 50. - The straight cascade in vertical gust.
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Figure 51. - Start of process. ;
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Figure 53. - Second phase of additional pressure.
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Figure 55. - Pressure of undisturbed plate pu.
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Figure 56, - Pressure contributionph.
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Figure 57. - Velocity distributions vy/vO at times 5, 6, 7, and 8.
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Figure 58. - Functions f forvarioustime intervals.
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. Figure 59.
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Figure 60. - Pressure contribution pv.
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Figure 61. - Resultant presswe distributions.
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Figure 65. - Cascade efficiency. “
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Figure 67. - Efficiency of cascade of double-wedge profiles.
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Figure 70, - Blade form, blade form without angular rotation,
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Figure 71.
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